Spring AI 中的 Elasticsearch 向量数据库集成了 Elasticsearch 的向量功能,提供向量存储和搜索能力。
Elasticsearch 向量数据库支持:
分布式向量存储
高级搜索功能
实时向量操作
全文搜索集成
基本设置
< dependency >
< groupId > org.springframework.ai </ groupId >
< artifactId > spring-ai-elasticsearch-vectordb </ artifactId >
< version > ${spring-ai.version} </ version >
</ dependency >
# Elasticsearch 向量数据库配置
spring.ai.elasticsearch.vectordb.enabled =true
spring.ai.elasticsearch.vectordb.host =localhost
spring.ai.elasticsearch.vectordb.port =9200
spring.ai.elasticsearch.vectordb.index-name =vectors
@ Service
public class ElasticsearchVectorService {
private final ElasticsearchVectorClient vectorClient ;
public ElasticsearchVectorService ( ElasticsearchVectorClient vectorClient ) {
this . vectorClient = vectorClient;
}
public void storeVector ( String id , float [] vector , Map < String , Object > metadata ) {
vectorClient . store (id, vector, metadata);
}
public List < SearchResult > searchSimilar ( float [] queryVector , int k ) {
return vectorClient . search (queryVector, k);
}
}
向量操作
1. 向量存储
@ Configuration
public class ElasticsearchVectorStorageConfig {
@ Bean
public VectorStorage elasticsearchVectorStorage ( ElasticsearchVectorProperties properties ) {
return new ElasticsearchVectorStorage (properties);
}
}
2. 相似性搜索
@ Configuration
public class ElasticsearchSimilaritySearchConfig {
@ Bean
public SimilaritySearch elasticsearchSimilaritySearch ( ElasticsearchVectorProperties properties ) {
return new ElasticsearchSimilaritySearch (properties);
}
}
3. 混合搜索
@ Service
public class HybridSearchService {
private final ElasticsearchVectorClient vectorClient ;
public List < SearchResult > hybridSearch ( String text , float [] queryVector , int k ) {
return vectorClient . hybridSearch (text, queryVector, k);
}
}
高级特性
自定义索引配置
@ Configuration
public class IndexConfig {
@ Bean
public IndexConfig indexConfig () {
return IndexConfig . builder ()
. name ( "vector-index" )
. dimension ( 1536 )
. metric ( MetricType . COSINE )
. build ();
}
}
映射配置
@ Configuration
public class MappingConfig {
@ Bean
public MappingConfig mappingConfig () {
return MappingConfig . builder ()
. vectorField ( "vector" )
. metadataFields ( Arrays . asList ( "title" , "content" ))
. build ();
}
}
management.endpoints.web.exposure.include =elasticsearch-vectordb
management.endpoint.elasticsearch-vectordb.enabled =true
最佳实践
使用 Elasticsearch 向量数据库时,请考虑以下最佳实践:
索引设计 :设计高效的索引结构
映射优化 :优化字段映射
分片管理 :配置适当的分片
查询优化 :优化搜索查询
监控 :设置全面的监控
故障排除
常见问题及解决方案:
连接问题
性能问题
存储问题
文档有误?请协助编辑 发现文档问题?点击此处直接在 GitHub 上编辑并提交 PR,帮助我们改进文档!