Spring AI 中的 GemFire 向量数据库集成了 VMware GemFire 的向量功能,提供向量存储和搜索能力。
GemFire 向量数据库支持:
分布式向量存储
内存向量操作
实时向量搜索
高性能扩展
基本设置
< dependency >
< groupId > org.springframework.ai </ groupId >
< artifactId > spring-ai-gemfire-vectordb </ artifactId >
< version > ${spring-ai.version} </ version >
</ dependency >
# GemFire 向量数据库配置
spring.ai.gemfire.vectordb.enabled =true
spring.ai.gemfire.vectordb.locator-host =localhost
spring.ai.gemfire.vectordb.locator-port =10334
spring.ai.gemfire.vectordb.region-name =vectors
@ Service
public class GemFireVectorService {
private final GemFireVectorClient vectorClient ;
public GemFireVectorService ( GemFireVectorClient vectorClient ) {
this . vectorClient = vectorClient;
}
public void storeVector ( String id , float [] vector ) {
vectorClient . store (id, vector);
}
public List < SearchResult > searchSimilar ( float [] queryVector , int k ) {
return vectorClient . search (queryVector, k);
}
}
向量操作
1. 向量存储
@ Configuration
public class GemFireVectorStorageConfig {
@ Bean
public VectorStorage gemFireVectorStorage ( GemFireVectorProperties properties ) {
return new GemFireVectorStorage (properties);
}
}
2. 相似性搜索
@ Configuration
public class GemFireSimilaritySearchConfig {
@ Bean
public SimilaritySearch gemFireSimilaritySearch ( GemFireVectorProperties properties ) {
return new GemFireSimilaritySearch (properties);
}
}
3. Region 配置
@ Configuration
public class RegionConfig {
@ Bean
public RegionConfig regionConfig () {
return RegionConfig . builder ()
. name ( "vectors" )
. dataPolicy ( DataPolicy . REPLICATE )
. build ();
}
}
高级特性
自定义 Region 配置
@ Configuration
public class CustomRegionConfig {
@ Bean
public RegionConfig customRegionConfig () {
return RegionConfig . builder ()
. name ( "custom-vectors" )
. dataPolicy ( DataPolicy . PARTITION )
. partitionAttributes ( partitionAttributes ())
. build ();
}
private PartitionAttributes partitionAttributes () {
return PartitionAttributes . builder ()
. redundantCopies ( 1 )
. build ();
}
}
持久化配置
@ Configuration
public class PersistenceConfig {
@ Bean
public PersistenceConfig persistenceConfig () {
return PersistenceConfig . builder ()
. diskStoreName ( "vectorStore" )
. build ();
}
}
management.endpoints.web.exposure.include =gemfire-vectordb
management.endpoint.gemfire-vectordb.enabled =true
最佳实践
使用 GemFire 向量数据库时,请考虑以下最佳实践:
Region 设计 :设计高效的 Region 结构
内存管理 :配置适当的内存设置
持久化 :设置适当的持久化
分区 :优化分区策略
监控 :实施全面的监控
故障排除
常见问题及解决方案:
连接问题
性能问题
优化 Region 配置
调整内存设置
查看分区策略
存储问题
文档有误?请协助编辑 发现文档问题?点击此处直接在 GitHub 上编辑并提交 PR,帮助我们改进文档!